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My research interests span Artificial Intelligence (AI), Deep Learning (DL) and Programming Languages (PL).
My goal is to create methodologies, techniques and tools for improving the learning efficiency of students and
increasing the programming productivity of developers. During the past several years, I have devised automated
reasoning strategies to help K-12 students with STEM subjects [IJCAI’15a, IJCAI’15b, IJCAI’16], and developed
deep neural architectures to tackle traditional program analysis tasks, such as semantic understanding and program
repair [L@S’17, PLDI’18, ICLR’18].

Background and Current Work
Ever since I began my PhD studies, I set the goal for my research to be not only scientifically sound but also
practically impactful. As the world is currently undergoing a nascent paradigm shift in education from traditional
one-classroom-for-all to massively online and personalized learning, I have set my sight on K-12 education, espe-
cially the STEM subjects with which students struggle the most, such as Math and Geometry. In the past several
decades, scientists have made remarkable progress in the field of automated reasoning. Research findings have been
successfully applied to a wide range of domains such as logic, algebra, etc. However, those efforts have not focused
on education and hence not well suited for learning purposes.

Specifically addressing the educational needs, I developed a new reasoning technique targeting K-12 education.
My key insight is that problem solving typically involves the use and trained familiarity with a number of important
problem solving strategies. Therefore, a powerful reasoning paradigm can be viewed as an iterative process of col-
lecting and applying problem-solving strategies. A challenge then arises: How to distill problem-solving strategies
in a given problem domain? At the level of each individual problem, directly treating a solution to the problem
as a problem-solving strategy is overly specific and lacks generality. Rather, the key is to generalize the specific
solutions by retaining their high-level, essential problem-solving strategies and abstracting away their low-level
variations. An additional hypothesis, which we validated in our extensive, cross-disciplinary evaluations, is that the
number of such problem-solving strategies is often small when appropriately represented. Its generality allowed me
to apply the new reasoning methodology to several different settings, including geometry proof problems, Raven’s
Progressive Matrices (a standardized intelligence test) and Mathematical Word Problems. Educational Testing Ser-
vice [ETS], a leading educational service provider, recently expressed strong interest in adopting my work to help
design Raven’s Progressive Matrices, which further highlights the need for and the practical utility of my work.

I am rooted in PL as a PhD student, thus program analysis has always been an important research interest
of mine. As online courses have been designed and made available at an unprecedented rate, new challenging
research problems have also emerged. In particular, one that has triggered much interest in the PL community
is how to automate the feedback loop for online programming courses. A good solution to this problem will
produce many benefits. For one, programming courses remain the most popular in the entry-level Computer Science
curriculum. Although online courses have made the relevant materials more accessible, important innovations
are needed to help provide students with comparable learning experience to that of traditional smaller classroom
settings. Automatically generating feedback to students’ programming submissions is one such essential utility.
Existing approaches either provide inaccurate feedback or do not scale to the MOOC scale. I have proposed the
“Search, Align and Repair” data-driven framework that combines PL and AI/DL, and introduced novel program
representations to engineer a production-quality system. My system, SARFGEN, is the most powerful automated
feedback generator to date, and has been deployed for production use in Microsoft [SARFGEN].

AI for K-12 education

With the same underlying reasoning framework, I am able to create technologies that automate several pedagogical
tasks, including solution generation, interactive tutoring and problem generation.

Geometry Theorem Proving Geometry proof problems form one of the most challenging topics for K-12 stu-
dents. The standard format of a geometry proof problem consists of a given geometry figure, a set of provided
constraints and a goal to prove. Students are asked to write a step-by-step deduction using the standard Euclidean
axioms. The task becomes more difficult when a proof requires auxiliary constructions — adding lines/arcs to the
problem figure to help discover a proof — because finding appropriate constructions can be very challenging as one
could add any geometric elements anywhere in the problem figure. I proposed the use of six template figures as the
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problem-solving strategies to guide auxiliary construction [IJCAI’15a]. The approach is to identify additional lines
to complete the partial template figures in the original problem figure. Applicable partial template figures are pri-
oritized to favor those more complete ones to speed up the search process. My prototype, iGeoTutor, significantly
outperforms all existing geometry solvers for Euclidean proofs, in terms of both capability and speed.

Interactive Geometry Proof Tutoring It is not always beneficial to directly give students the solution to a prob-
lem. Rather, a more helpful pedagogical principle is to help students gradually acquire problem-solving skills on
their own. This is the exact goal of my research on interactive tutoring for geometry proof problems [AGPT]. In-
stead of presenting an auxiliary construction that ultimately leads to a solution, my tutoring system, AGPT, displays
the underlying template figures used by iGeoTutor to search for auxiliary constructions, and teaches the student how
to apply them to discover the constructions. AGPT guides students to explore the solution space on their own while
engaging them by providing hints whenever necessary. To evaluate AGPT, I compared the learning effectiveness
of three different groups of students, guided either by AGPT, iGeoTutor, or a human tutor. Study results show that
students guided by AGPT perform as well as those guided by human tutors, and perform significantly better than
those guided by iGeoTutor.

Raven’s Progressive Matrices Besides problem solving, my reasoning methodology can be leveraged to tackle
automated problem generation, another important research problem in education. My first work in this direction
considers Raven’s Progressive Matrices (RPM) [IJCAI’15b]. A RPM problem is presented as a matrix filled with
figures, except the last cell, which is left blank. The goal is to select the correct answer from a given set of choices
to fill in the missing cell, so that the figures in all the cells follow some patterns.

Automating the construction of RPMs is very beneficial since traditional RPM problems have been manually
designed and are quite limited in number. Thus, this work can provide abundant fresh problems both for practice and
examination. The major technical challenge to be addressed is how to model the seemingly irregular and diverse
variations in RPM problems. My solution is through generalizing the problem-solving strategies of RPMs first
proposed in [CARPENTER]. My generalization considers three high-level variation patterns and is able to model
any problem on the official RPM tests. Then I model figures as abstract objects and use a finite set of attributes to
represent its properties. Governed by particular instantiations from this generalization, the properties among groups
of figures can be set and an entire RPM can be assembled. My evaluation results show that the generated RPMs
are indistinguishable from officially published RPMs for testing purposes and can also be easily customized with
varied difficulty levels, therefore drastically expanding the scarce handcrafted RPM problem corpus.

Mathematical Word Problems This reasoning methodology has also been successfully applied to generate
Mathematical Word Problems (MWPs) [IJCAI’16]. An MWP comprises several sentences to communicate a short
narrative, which includes some numerical information and asks for some unknown quantities to be calculated. Auto-
matically generating MWPs is a challenging task because a generated problem needs to both exhibit a well-founded
mathematical structure and also an easily understood natural language story. My insight is to abstract a problem
solving strategy as identifying and utilizing dimensional units from the natural language story to establish math-
ematical equations. Viewing this abstraction in reverse allows us to generate MWPs: synthesize a dimensionally
consistent equation and compose the natural language story via a bottom-up traversal of the equation tree. I realized
this approach into a working system for generating MWPs. According to an extensive evaluation, the generated
problems are statistically indistinguishable from actual textbook problems.

AI for programming

While massive online courses have made education more accessible and affordable, it also introduces new chal-
lenges due to its massive scale. For example, traditional mechanism of manually giving feedback to online students
is simply infeasible since the student-to-teacher ratio typically reaches hundreds to one or even in millions to one.
Technologies that automate this feedback loop are necessary and need to provide prompt response. Existing ap-
proaches have limited applicability — require manual effort, provide imprecise feedback, cannot scale as the size
of program increases, etc.

I introduce a novel conceptual framework — Search, Align and Repair — that effectively addresses the afore-
mentioned challenges [L@S’17, PLDI’18]. The strategy is to use existing correct programs to repair incorrect
programs: it searches for similar reference solutions, aligns each statement in the incorrect program with a cor-
responding statement in the reference solutions to identify discrepancies for suggesting changes, and pinpoints
minimal fixes to patch the incorrect program. At a technical level, it needs to address three key challenges:
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Search: Given an incorrect student program, how to efficiently identify a set of closely-related candidate programs
among all correct solutions?

Align: How to efficiently and precisely align each selected program with the incorrect program to compute a
correction set that consists of expression- or statement-level discrepancies?

Repair: How to quickly identify a minimal set of fixes out of an entire correction set?

For the “Search” challenge, I identify syntactically most similar correct programs w.r.t. the incorrect program.
Traditional approaches of comparing program similarity via tree-edit distance on the abstract syntax trees do not
scale in this setting as the search space of correct solutions is huge. Instead, I propose a new tree embedding
scheme for programs using numerical embedding vectors with a new distance metric in the Euclidean space. The
new program embedding vectors (called position-aware characteristic vectors) efficiently capture the structural
information of the program ASTs. Because the numerical distance metric is easier and faster to compute, program
embedding allows us to scale to a large number of programs.

For the “Align” challenge, I introduce a usage-based alpha-conversion to rename variables in a correct program
using those from the incorrect program. In particular, I represent each variable with the new embedding vector
based on its usage profile in the program, and compute the mapping between two sets of variables using the Eu-
clidean distance metric. In the next phase, I split both programs into sequences of basic blocks and align each pair
accordingly. Finally, I construct discrepancies by matching statements only from the aligned basic blocks.

For the “Repair” challenge, I dynamically minimize the set of corrections needed to repair the incorrect program
from the large set of possible corrections generated by the alignment step. A naive enumerative search that traverses
the whole set of discrepancies will likely run into performance issues. Instead, I incorporate deep learning models
to prioritize the application of each correction in the set [ICLR’18]. The idea is to have deep learning models
predict the type of errors that a given program may incur, and then rank the corrections based on their relevancy
w.r.t. prediction results.

The accuracy heavily depends on the degree of understanding that deep learning models have on program
semantics. Unlike images and text, a program has a deep and well-defined semantic meaning that can be difficult to
capture by only considering its syntax1. Therefore existing syntax-based program embeddings are inadequate for
our problem setting. I propose a novel semantic program embedding that is learned from the sequence of semantic
states from program execution. My insight is that program states expressed as sequential tuples of live variable
values not only capture program semantics more precisely, but also offer a more natural fit for Recurrent Neural
Networks to model. Incorporating new deep neural architectures for training the semantic program embeddings, I
improve the naive enumerative search by more than an order of magnitude. Beyond neural program repair, I believe
that this dynamic program embeddings can be fruitfully utilized for many other neural program analysis tasks such
as program summarization and synthesis.

Future Research — AI/DL for Software Engineering
I am excited and passionate about leveraging deep learning models for solving traditional program analysis tasks.
A critical challenge is program representation, i.e., how programs should be represented to maximize deep learning
architectures’ capabilities. My recent work [ICLR’18] on dynamic program embeddings that I have described
earlier starts this exciting journey, which can lead to powerful solutions to traditionally difficult program analysis
and software engineering problems. Since Microsoft is one of the largest software company in the world, this line
of research can have a significant impact inside the company such as helping Microsoft engineers to improve their
productivity or building products to facilitate software developers in general (e.g., providing more advanced IDE
support in Visual Studio).

Applications of Dynamic Program Embedding

An immediate line of research is to explore applications of the new dynamic program embedding to a wide range of
neural programming tasks, such as synthesis, summarization, and automatic program fixing. Because the dynamic
program embedding can more accurately capture program semantics, it is possible to make all existing systems
more effective. A technical challenge is how to incorporate the dynamic embedding into existing models in an
efficient and elegant manner, as additional information may make models more difficult to generalize and result in
worse performance.

1syntactically similar programs can exhibit vastly different run-time behavior.
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Hybrid Program Representation

Another interesting direction is how to learn hybrid, fine-grained program representations that offer the best trade-
offs. The idea is to exploit common programs’ characteristics. For example, regarding elements that are more
static in nature, such as declarations or assignment statements, syntax-level features (i.e. tokens and ASTs) may
suffice. As for more dynamic elements like control statements, semantic features (i.e., program dependency graphs
or execution traces) may be needed. Therefore, the natural question is: Can we merge different levels of feature
dimensions to build a hybrid program embedding that can be learned precisely and efficiently? Apart from combin-
ing program features, different techniques (i.e., ngram or RNN modeling) for learning language models can also be
considered. A possible idea is to pair each program feature with the most effective modeling technique such that
the final hybrid program embedding can be trained with even higher precision.

Deep Neural Networks for Programs

Programs are fundamentally different from images and text. In particular, images and text have more lenient and
robust syntax — small variations often lead to small semantic differences. In contrast, program syntax is more rigid
and strict — small syntatic-level changes can lead to uncompilable code or code with drastically different semantics.
The semantics of a program is also more difficult to interpret from its surface-level syntax as demonstrated in my
work on dynamic program embedding [ICLR’18].

Those differences naturally prompt the following questions: (1) Would the programs be unfit for deep neural
networks which were designed for images and texts; and (2) how to reinvent deep learning models that can exploit
the unique characteristics of programs and do as well as the existing deep models do on images and texts or even
better. The answers to those questions can be revolutionary in both DL and PL, either in the form of fundamental
theoretic contributions, or in the form of extensive, convincing empirical analysis. Either can help lay out the
foundation on which the second challenge can be suitably addressed. Indeed, such a research agenda should be a
priority for PL researchers. Although the DL community has been producing ground-breaking results in the areas
of computer vision and natural language processing, applying DL models to PL problems has not had nearly the
same level of success. I am confident about what potential DL techniques can offer, and I am excited to be a pioneer
who bridges the PL and DL gap.
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